sábado, 4 de febrero de 2017

Formulario - Cuánto sabes de Matemática



Documentos (Dropbox - Drive)



ENLACES:






Scribd - El fracaso de la Matemática Moderna





Scribd - Matemática Moderna




Scribd - Historia de las Matemáticas




Slideshare - Matemáticos más sobresalientes




Slideshare - Trucos matemáticos




Alan Turing

Fue Un lógico, matemático y criptoanalista británico. Creó una buena parte de las bases teóricas para las tecnologías modernas de la información y de la computación. Se evidenciaron también como orientadores sus aportes a la biología teórica. Turing es considerado hoy uno de los más influyentes teóricos del desarrollo temprano de la computación y la informática. El modelo de calculabilidad (o computabilidad) de la máquina de Turing que él desarrolló constituye uno de los fundamentos de la informática teórica.



ALAN TURING Y LA COMPUTADORA



John von Neumann

Fue un matemático de origen austrohúngaro. Realizó notables contribuciones en muchas ramas de las matemáticas. Von Neumann desarrolló la teoría del álgebra de operadores limitados en espacios de Hilbert, cuyos objetos fueron denominados más tarde álgebras de von Neumann y que actualmente encuentran aplicación en la teoría cuántica de campos y en la estadística de partículas. Von Neumann fue consultor para problemas de balística del ejército y la marina de EE.UU. y colaboró en el Proyecto Manhattan. Contribuyó de manera decisiva al desarrollo de las primeras computadoras electrónicas.


MÁS SOBRE JOHN VON NEUMANN (VER VÍDEO)



David Hilbert

Fue un matemático alemán, reconocido como uno de los más influyentes del siglo XIX y principios del XX. Estableció su reputación como gran matemático y científico inventando o desarrollando un gran abanico de ideas, como la teoría de invariantes, la axiomatización de la geometría y la noción de espacio de Hilbert, uno de los fundamentos del análisis funcional. Hilbert y sus estudiantes proporcionaron partes significativas de la infraestructura matemática necesaria para la mecánica cuántica y la relatividad general. Fue uno de los fundadores de la teoría de la demostración, la lógica matemática y la distinción entre matemática y metamatemática. Adoptó y defendió vivamente la teoría de conjuntos y los números transfinitos de Cantor. Un ejemplo famoso de su liderazgo mundial en la matemática es su presentación en 1900 de un conjunto de problemas que establecieron el curso de gran parte de la investigación matemática del siglo XX.

EL HOTEL INFINITO DE HILBERT



Bernhard Riemann

Fue un matemático alemán. Riemann desarrolló su trabajo en el campo del análisis, la geometría diferencial, la física matemática y la teoría de números. La hipótesis de Riemann, que lleva su nombre, se cuenta entre los problemas no resueltos de la matemática más notables.La función zeta de Riemann, una función de variable compleja, desempeña un importante papel en la teoría analítica de números. Llevan su nombre las superficies de Riemann, la geometría de Riemann y — dentro de ella — la métrica de Riemann.




LA MÚSICA DE LOS NÚMEROS PRIMOS - LA HIPÓTESIS DE RIEMANN



Nikolái Ivánovich Lobachevski

Fue un matemático ruso. Fue el primero en publicar un trabajo en el que se define una geometría no euclidiana. En el mismo texto desarrolló también una trigonometría no euclidiana. El método propuesto por él para la determinación de raíces en funciones polinómicas de grado n se cuenta entre los otros importantes logros matemáticos de Lobachevski.


Bernard Bolzano

Fue un filósofo, teólogo y matemático bohemio. Bolzano desarrolló investigación básica en el área del análisis matemático. Construyó, probablemente por primera vez, una función que es en todas partes continua pero en ninguna diferenciable. El teorema de Bolzano-Weierstrass lleva su nombre.

Carl Friedrich Gauss

Fue un matemático, astrónomo, geodésico y físico alemán. Gauss es considerado uno de los más grandes matemáticos de la historia y fue honrado por sus meritorios trabajos científicos ya en tiempos de vida. Se dedicó a casi todos los campos de la matemática y reconoció muy tempranamente la utilidad de los números complejos. Aun siendo muy joven descubrió la posibilidad de construcción del heptadecágono regular con una regla y un compás. Una gran cantidad de procedimientos, conceptos y teoremas llevan su nombre, como por ejemplo el método de eliminación gaussiana y los enteros gaussianos. El Premio Carl Friedrich Gauss, denominado así en su honor, se otorga cada cuatro años a matemáticos destacados por trabajos en el área de la matemática aplicada.

 CARL FRIEDRICH GAUSS - NIÑO GENIO



Leonhard Euler

Fue un matemático y físico suizo. Se trata del principal matemático del siglo XVIII y uno de los más grandes y prolíficos de todos los tiempos.
Vivió en Rusia y Alemania la mayor parte de su vida y realizó importantes descubrimientos en áreas tan diversas como el cálculo o la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática. Asimismo se le conoce por sus trabajos en los campos de la mecánica, óptica y astronomía.

Euler ha sido uno de los matemáticos más prolíficos, y se calcula que sus obras completas reunidas podrían ocupar entre 60 y 80 volúmenes. Una afirmación atribuida a Pierre Simón Laplace expresa la influencia de Euler en los matemáticos posteriores: «Lean a Euler, lean a Euler, él es el maestro de todos nosotros.


EULER - LA MATEMÁTICA INFINITA



Isaac Newton

Fue un físico, filósofo, teólogo, inventor, alquimista y matemático inglés. Es autor de los Philosophiæ naturalis principia mathematica, más conocidos como los Principia, donde describe la ley de la gravitación universal y estableció las bases de la mecánica clásica mediante las leyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en su obra Opticks) y el desarrollo del cálculo matemático.

Newton comparte con Gottfried Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes.


MÁS SOBRE ISSAC NEWTON (VER VÍDEO)



Gottfried Wilhelm Leibniz

Fue uno de los grandes pensadores de los siglos XVII y XVIII, y se le reconoce como "El último genio universal". Realizó profundas e importantes contribuciones en las áreas de metafísica, epistemología, lógica, filosofía de la religión, así como en la matemática, física, geología, jurisprudencia e historia. Incluso Denis Diderot, el filósofo deísta francés del siglo XVIII, cuyas opiniones no podrían estar en mayor oposición a las de Leibniz, no podía evitar sentirse sobrecogido ante sus logros, y escribió en la Encyclopédie: "Quizás nunca haya un hombre que haya leído tanto, estudiado tanto, meditado más y escrito más que Leibniz. Lo que ha elaborado sobre el mundo, sobre Dios, la naturaleza y el alma es de la más sublime elocuencia. Si sus ideas hubiesen sido expresadas con el olfato de Platón, el filósofo de Leipzig no cedería en nada al filósofo de Atenas."

Ocupa un lugar igualmente importante tanto en la historia de la filosofía como en la de la matemática. Inventó el cálculo infinitesimal, sin conocer trabajo alguno de Newton, y su notación es la que se emplea desde entonces. También inventó el sistema binario, fundamento virtual de todas las arquitecturas de las computadoras actuales.3 Fue uno de los primeros intelectuales europeos que reconocieron el valor y la importancia del pensamiento chino y de China como potencia desde todos los puntos de vista.

¿Por qué existe algo en vez de nada? - Gottfried Leibniz



Blaise Pascal

Fue un matemático, físico, filósofo cristiano y escritor francés. Sus contribuciones a la matemática y a la historia natural incluyen el diseño y construcción de calculadoras mecánicas, aportes a la teoría de la probabilidad, investigaciones sobre los fluidos y la aclaración de conceptos tales como la presión y el vacío. Después de una experiencia religiosa profunda en 1654, Pascal abandonó la matemática y la física para dedicarse a la filosofía y a la teología.



MÁS SOBRE BLAISE PASCAL  (VER VÍDEO)



René Descartes

Filósofo y matemático francés. Después del esplendor de la antigua filosofía griega y del apogeo y crisis de la escolástica en la Europa medieval, los nuevos aires del Renacimiento y la revolución científica que lo acompañó darían lugar, en el siglo XVII, al nacimiento de la filosofía moderna. El primero de los ismos filosóficos de la modernidad fue el racionalismo; Descartes, su iniciador, se propuso hacer tabla rasa de la tradición y construir un nuevo edificio sobre la base de la razón y con la eficaz metodología de las matemáticas. Su «duda metódica» no cuestionó a Dios, sino todo lo contrario; sin embargo, al igual que Galileo, hubo de sufrir la persecución a causa de sus ideas.

MÁS SOBRE RENÉ DESCARTES  (VER VÍDEO)



Johannes Kepler

Fue un matemático, astrónomo y astrólogo alemán. Una figura clave en la revolución científica del siglo XVII, es más conocido por sus leyes de movimiento planetario, basado en sus obras Astronomía nova, Harmonices Mundi y Epitome of Copernican Astronomy . Estas obras también proporcionaron una de las bases de la teoría de la gravitación universal de Isaac Newton.


Kepler era un profesor de matemáticas en una escuela de seminario en Graz, Austria, donde se convirtió en un asociado del príncipe Hans Ulrich von Eggenberg. Más tarde se convirtió en asistente del astrónomo Tycho Brahe, y finalmente fue el matemático imperial del emperador Rodolfo II y sus dos sucesores Matías y Fernando II . También fue profesor de matemáticas en Linz (Austria) y asesor del general Wallenstein . Además, realizó un trabajo fundamental en el campo de la óptica, inventó una versión mejorada del telescopio refractor (el telescopio Kepleriano ) y fue mencionado en los descubrimientos telescópicos de su Galileo Galilei contemporáneo .

MÁS SOBRE JOHANNES KEPLER  (VER VÍDEO)



Gerolamo Cardano

Fue un médico, filósofo y matemático italiano. Cardano hizo importantes descubrimientos en el cálculo de probabilidades, así como también fue el primero en sugerir la existencia de números imaginarios. Cardano encontró un algoritmo para hallar la solución de las ecuaciones de tercer grado, la fórmula de Cardano, que lleva su nombre. También en su honor se denomina así la junta cardán (un componente mecánico que articula dos ejes).


Nicolo Tartaglia

Fue un matemático veneciano, especialmente conocido por sus relevantes aportes en el tema de las ecuaciones de tercer grado y por la gran controversia en la que se vio envuelto en torno a la solución de las 13 ecuaciones de este tipo que entonces se distinguían. En la actualidad se considera una única forma de la ecuación de tercer grado: x³ + ax² + bx + c = 0, pero esta formulación única es posible gracias a que a, b y c pueden ser números negativos o cero. En la época de Tartaglia aún no se aceptaban los números negativos y por ello existían trece ecuaciones distintas, de las cuales siete eran completas (todas las potencias representadas), tres sin término lineal y tres sin término cuadrático. En la manera moderna de escribirlo serían x³ + px = q, x³ = px + q y x³ + q = px. La tercera de estas ecuaciones tiene una solución principal negativa, de modo que no se trataba. En otro orden de cosas, a Tartaglia se le reconoce su aporte a la balística por ser el primero en demostrar (en 1537) que una bala lanzada al aire alcanza su máxima distancia si se la dispara en un ángulo de 45º.
El Triángulo de Tartaglia



Leonardo Fibonacci

Matemático italiano que difundió en Occidente los conocimientos científicos del mundo árabe, los cuales recopiló en el Liber Abaci (Libro del ábaco). Popularizó el uso de las cifras árabes y expuso los principios de la trigonometría en su obra Practica Geometriae (Práctica de la geometría).
Considerado como el primer algebrista de Europa (cronológicamente hablando) y como el introductor del sistema numérico árabe, fue educado de niño en Argelia, donde su padre era funcionario de aduanas, y donde aprendió "el ábaco, al uso de los indios". Después tuvo manera, por razones de tipo comercial, de conocer todo lo que de esta ciencia se enseñaba en Egipto, en Siria, en Sicilia y en Provenza. Al material así reunido le dio un orden, una unidad de método y una claridad de enseñanza en el Liber Abaci (Libro del ábaco), que, como modelo de texto universitario, sirvió también, por su caudal de ejemplos, para la compilación de manuales de aritmética para uso de los comerciantes.

La famosa sucesión de Fibonacci



Al-Juarismi

Al-Juarismi fue un matemático, astrónomo y geógrafo persa. Se le considera como uno de los matemáticos más relevantes debido a que se dedicó – al contrario que Diofanto, por ejemplo – no a la teoría de los números, sino al álgebra como forma de investigación elemental. Al-Juarismi introdujo de la matemática hindú la cifra cero (árabe: sifr) en el sistema arábico y con ello en todos los sistemas numéricos modernos. En sus libros expone estrategias de solución sistemáticas para ecuaciones lineales y cuadráticas. El término «álgebra» se debe a la traducción de su libro Hisab al-dschabr wa-l-muqabala.

Aryabhata

Matemático y astrónomo indio. Efectuó un cálculo aproximado del valor de, halló soluciones para las ecuaciones indeterminadas de primer grado y elaboró unas tablas trigonométricas. Sistematizó los conocimientos científicos contenidos en los Siddhantas.

Se supone que el concepto de 0 (cero) fue conocido por él, aunque fue en los trabajos más recientes de Brahmagupta donde el cero se trató como un número independiente. Aryabhata determinó de manera muy precisa, para las condiciones de aquel entonces, el número π (Pi): en 3,1416 y parece haber intuido que se trataba de un número irracional.


Herón de Alejandría

Físico y matemático griego que vivió en Alejandría en una época no exactamente determinada de los siglos I y II d. de C. Como matemático, aportó modestas contribuciones a la ciencia pura; sin embargo, como cultivador de las ciencias aplicadas fue, en la época tolemaica, el científico más ilustre después de Claudio Tolomeo.

Ha sido difícil determinar cuáles de los numerosos textos llegados hasta nosotros bajo su nombre pertenecen, en realidad, al Herón alejandrino de quien nos habla Pappo; los que hoy se consideran suyos están reunidos en una edición crítica de cinco tomos, en griego o en la versión árabe, y con la traducción alemana (Leipzig, 1899-1914). La mayor parte de sus obras están dedicadas a la física aplicada y a la geometría práctica.

MÁS SOBRE HERÓN DE ALEJANDRÍA (VER VÍDEO




Arquímedes de Siracusa

Matemático griego. Los grandes progresos de las matemáticas y la astronomía del helenismo son deudores, en buena medida, de los avances científicos anteriores y del legado del saber oriental, pero también de las nuevas oportunidades que brindaba el mundo helenístico. En los inicios de la época helenística se sitúa Euclides, quien llegó a la posteridad una prolífica obra de síntesis de los conocimientos de su tiempo que afortunadamente se conservó casi íntegra y se convirtió en un referente casi indispensable hasta la Edad Contemporánea.



MÁS SOBRE ARQUÍMEDES DE SIRACUSA (VER VÍDEO)



Apolonio de Pérgamo


Matemático griego. Conocido con el sobrenombre del Gran Geómetra, sus extensos trabajos sobre geometría tratan de las secciones cónicas y de las curvas planas y la cuadratura de sus áreas. Acuñó los términos elipse, hipérbola y parábola, que responden a las respectivas propiedades matemáticas de estas tres funciones. También explicó el movimiento de los planetas según la teoría de los epiciclos.



MÁS SOBRE APOLONIO DE PÉRGANO (VER VÍDEO)




Euclides de Alejandría

Es el matemático más prominente de la antigüedad, famoso por su tratado sobre matemáticas Los elementos. La perdurable naturaleza de los elementos debe hacer de Euclides el profesor de matemáticas líder de la historia. Sin embargo, poco se sabe de su vida excepto que enseñaba en Alejandría, Egipto. Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450 d. C. No mucho más joven que éstos [alumnos de Platón] es Euclides, quien juntó los ‘Elementos’, ordenando muchos de los teoremas de Eudoxo, perfeccionó muchos de los de Teateto y también demostró irrefutablemente la cosas que habían sido probadas no tan estrictamente por sus predecesores.

MÁS SOBRE EUCLIDES DE ALEJANDRÍA (VER VÍDEO)




Eudoxo de Cnidos


Hijo de Esquines y discípulo de Platón. Su familia estaba compuesta por médicos y por su influencia realizó los estudios de medicina, profesión que ejerció durante algunos años en Grecia. En geometría influyó de manera importante sobre Euclides con su teoría de las proporciones y el método exhaustivo, por lo que está considerado como el padre del cálculo integral. La primera fue la solución más antigua a los números irracionales, que no pueden ser expresados como cociente de dos números enteros. El método exhaustivo le permitió abordar el problema del cálculo de áreas y volúmenes, como el de la pirámide, cuyo volumen es un tercio de un prisma que tenga la misma base, además es autor de originales teorías sobre las curvas y las cónicas. 

MÁS SOBRE EUDOXO DE CNIDOS (VER VÍDEO)




Pitágoras de Samos

Fue un filósofo y matemático griego considerado el primer matemático puro. Contribuyó de manera significativa en el avance de la matemática helénica, la geometría, la aritmética, derivadas particularmente de las relaciones numéricas, y aplicadas por ejemplo a la teoría de pesos y medidas, a la teoría de la música o a la astronomía. Respecto a la música, sus conceptos de I, IV y V, fueron los pilares fundamentales en la armonización griega, y son los utilizados hoy en día. Es el fundador de la Escuela pitagórica, una sociedad que, si bien era de naturaleza predominantemente religiosa, se interesaba también en medicina, cosmología, filosofía, ética y política, entre otras disciplinas. 


MÁS SOBRE PITÁGORAS DE SAMOS (VER VÍDEO)




Tales de Mileto

Fue un filósofo griego, estadista, matemático, astrónomo e ingeniero. Según se señala en los escritos conservados, Tales habría demostrado teoremas geométricos sobre la base de definiciones y premisas con ayuda de reflexiones sobre la simetría. Aspiraba a encontrar una explicación racional del universo. El teorema sobre la proporcionalidad de los segmentos correspondientes al cortar rectas concurrentes por líneas paralelas se llama teorema de Tales en su honor.



MÁS SOBRE TALES DE MILETO (VER VÍDEO)